<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">"""
Language Modeling with ``nn.Transformer`` and torchtext
===============================================================

This is a tutorial on training a sequence-to-sequence model that uses the
`nn.Transformer &lt;https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html&gt;`__ module.

The PyTorch 1.2 release includes a standard transformer module based on the
paper `Attention is All You Need &lt;https://arxiv.org/pdf/1706.03762.pdf&gt;`__.
Compared to Recurrent Neural Networks (RNNs), the transformer model has proven
to be superior in quality for many sequence-to-sequence tasks while being more
parallelizable. The ``nn.Transformer`` module relies entirely on an attention
mechanism (implemented as
`nn.MultiheadAttention &lt;https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html&gt;`__)
to draw global dependencies between input and output. The ``nn.Transformer``
module is highly modularized such that a single component (e.g.,
`nn.TransformerEncoder &lt;https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html&gt;`__)
can be easily adapted/composed.

.. image:: ../_static/img/transformer_architecture.jpg

"""

######################################################################
# Define the model
# ----------------
#


######################################################################
# In this tutorial, we train a ``nn.TransformerEncoder`` model on a
# language modeling task. The language modeling task is to assign a
# probability for the likelihood of a given word (or a sequence of words)
# to follow a sequence of words. A sequence of tokens are passed to the embedding
# layer first, followed by a positional encoding layer to account for the order
# of the word (see the next paragraph for more details). The
# ``nn.TransformerEncoder`` consists of multiple layers of
# `nn.TransformerEncoderLayer &lt;https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html&gt;`__.
# Along with the input sequence, a square attention mask is required because the
# self-attention layers in ``nn.TransformerDecoder`` are only allowed to attend
# the earlier positions in the sequence. For the language modeling task, any
# tokens on the future positions should be masked. To produce a probability
# distribution over output words, the output of the ``nn.TransformerEncoder``
# model is passed through a linear layer followed by a log-softmax function.
#

import math
import os
from tempfile import TemporaryDirectory
from typing import Tuple

import torch
from torch import nn, Tensor
import torch.nn.functional as F
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from torch.utils.data import dataset

class TransformerModel(nn.Module):

    def __init__(self, ntoken: int, d_model: int, nhead: int, d_hid: int,
                 nlayers: int, dropout: float = 0.5):
        super().__init__()
        self.model_type = 'Transformer'
        self.pos_encoder = PositionalEncoding(d_model, dropout)
        encoder_layers = TransformerEncoderLayer(d_model, nhead, d_hid, dropout)
        self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
        self.encoder = nn.Embedding(ntoken, d_model)
        self.d_model = d_model
        self.decoder = nn.Linear(d_model, ntoken)

        self.init_weights()

    def init_weights(self) -&gt; None:
        initrange = 0.1
        self.encoder.weight.data.uniform_(-initrange, initrange)
        self.decoder.bias.data.zero_()
        self.decoder.weight.data.uniform_(-initrange, initrange)

    def forward(self, src: Tensor, src_mask: Tensor) -&gt; Tensor:
        """
        Arguments:
            src: Tensor, shape ``[seq_len, batch_size]``
            src_mask: Tensor, shape ``[seq_len, seq_len]``

        Returns:
            output Tensor of shape ``[seq_len, batch_size, ntoken]``
        """
        src = self.encoder(src) * math.sqrt(self.d_model)
        src = self.pos_encoder(src)
        output = self.transformer_encoder(src, src_mask)
        output = self.decoder(output)
        return output


def generate_square_subsequent_mask(sz: int) -&gt; Tensor:
    """Generates an upper-triangular matrix of ``-inf``, with zeros on ``diag``."""
    return torch.triu(torch.ones(sz, sz) * float('-inf'), diagonal=1)


######################################################################
# ``PositionalEncoding`` module injects some information about the
# relative or absolute position of the tokens in the sequence. The
# positional encodings have the same dimension as the embeddings so that
# the two can be summed. Here, we use ``sine`` and ``cosine`` functions of
# different frequencies.
#

class PositionalEncoding(nn.Module):

    def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)

        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
        pe = torch.zeros(max_len, 1, d_model)
        pe[:, 0, 0::2] = torch.sin(position * div_term)
        pe[:, 0, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe)

    def forward(self, x: Tensor) -&gt; Tensor:
        """
        Arguments:
            x: Tensor, shape ``[seq_len, batch_size, embedding_dim]``
        """
        x = x + self.pe[:x.size(0)]
        return self.dropout(x)


######################################################################
# Load and batch data
# -------------------
#


######################################################################
# This tutorial uses ``torchtext`` to generate Wikitext-2 dataset.
# To access torchtext datasets, please install torchdata following instructions at https://github.com/pytorch/data.
# %%
#  .. code-block:: bash
#
#      %%bash
#      pip install torchdata
#
# The vocab object is built based on the train dataset and is used to numericalize
# tokens into tensors. Wikitext-2 represents rare tokens as `&lt;unk&gt;`.
#
# Given a 1-D vector of sequential data, ``batchify()`` arranges the data
# into ``batch_size`` columns. If the data does not divide evenly into
# ``batch_size`` columns, then the data is trimmed to fit. For instance, with
# the alphabet as the data (total length of 26) and ``batch_size=4``, we would
# divide the alphabet into sequences of length 6, resulting in 4 of such sequences.
#
# .. math::
#   \begin{bmatrix}
#   \text{A} &amp; \text{B} &amp; \text{C} &amp; \ldots &amp; \text{X} &amp; \text{Y} &amp; \text{Z}
#   \end{bmatrix}
#   \Rightarrow
#   \begin{bmatrix}
#   \begin{bmatrix}\text{A} \\ \text{B} \\ \text{C} \\ \text{D} \\ \text{E} \\ \text{F}\end{bmatrix} &amp;
#   \begin{bmatrix}\text{G} \\ \text{H} \\ \text{I} \\ \text{J} \\ \text{K} \\ \text{L}\end{bmatrix} &amp;
#   \begin{bmatrix}\text{M} \\ \text{N} \\ \text{O} \\ \text{P} \\ \text{Q} \\ \text{R}\end{bmatrix} &amp;
#   \begin{bmatrix}\text{S} \\ \text{T} \\ \text{U} \\ \text{V} \\ \text{W} \\ \text{X}\end{bmatrix}
#   \end{bmatrix}
#
# Batching enables more parallelizable processing. However, batching means that
# the model treats each column independently; for example, the dependence of
# ``G`` and ``F`` can not be learned in the example above.
#

from torchtext.datasets import WikiText2
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator

train_iter = WikiText2(split='train')
tokenizer = get_tokenizer('basic_english')
vocab = build_vocab_from_iterator(map(tokenizer, train_iter), specials=['&lt;unk&gt;'])
vocab.set_default_index(vocab['&lt;unk&gt;'])

def data_process(raw_text_iter: dataset.IterableDataset) -&gt; Tensor:
    """Converts raw text into a flat Tensor."""
    data = [torch.tensor(vocab(tokenizer(item)), dtype=torch.long) for item in raw_text_iter]
    return torch.cat(tuple(filter(lambda t: t.numel() &gt; 0, data)))

# ``train_iter`` was "consumed" by the process of building the vocab,
# so we have to create it again
train_iter, val_iter, test_iter = WikiText2()
train_data = data_process(train_iter)
val_data = data_process(val_iter)
test_data = data_process(test_iter)

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def batchify(data: Tensor, bsz: int) -&gt; Tensor:
    """Divides the data into ``bsz`` separate sequences, removing extra elements
    that wouldn't cleanly fit.

    Arguments:
        data: Tensor, shape ``[N]``
        bsz: int, batch size

    Returns:
        Tensor of shape ``[N // bsz, bsz]``
    """
    seq_len = data.size(0) // bsz
    data = data[:seq_len * bsz]
    data = data.view(bsz, seq_len).t().contiguous()
    return data.to(device)

batch_size = 20
eval_batch_size = 10
train_data = batchify(train_data, batch_size)  # shape ``[seq_len, batch_size]``
val_data = batchify(val_data, eval_batch_size)
test_data = batchify(test_data, eval_batch_size)


######################################################################
# Functions to generate input and target sequence
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#


######################################################################
# ``get_batch()`` generates a pair of input-target sequences for
# the transformer model. It subdivides the source data into chunks of
# length ``bptt``. For the language modeling task, the model needs the
# following words as ``Target``. For example, with a ``bptt`` value of 2,
# we’d get the following two Variables for ``i`` = 0:
#
# .. image:: ../_static/img/transformer_input_target.png
#
# It should be noted that the chunks are along dimension 0, consistent
# with the ``S`` dimension in the Transformer model. The batch dimension
# ``N`` is along dimension 1.
#

bptt = 35
def get_batch(source: Tensor, i: int) -&gt; Tuple[Tensor, Tensor]:
    """
    Args:
        source: Tensor, shape ``[full_seq_len, batch_size]``
        i: int

    Returns:
        tuple (data, target), where data has shape ``[seq_len, batch_size]`` and
        target has shape ``[seq_len * batch_size]``
    """
    seq_len = min(bptt, len(source) - 1 - i)
    data = source[i:i+seq_len]
    target = source[i+1:i+1+seq_len].reshape(-1)
    return data, target


######################################################################
# Initiate an instance
# --------------------
#


######################################################################
# The model hyperparameters are defined below. The ``vocab`` size is
# equal to the length of the vocab object.
#

ntokens = len(vocab)  # size of vocabulary
emsize = 200  # embedding dimension
d_hid = 200  # dimension of the feedforward network model in ``nn.TransformerEncoder``
nlayers = 2  # number of ``nn.TransformerEncoderLayer`` in ``nn.TransformerEncoder``
nhead = 2  # number of heads in ``nn.MultiheadAttention``
dropout = 0.2  # dropout probability
model = TransformerModel(ntokens, emsize, nhead, d_hid, nlayers, dropout).to(device)


######################################################################
# Run the model
# -------------
#


######################################################################
# We use `CrossEntropyLoss &lt;https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html&gt;`__
# with the `SGD &lt;https://pytorch.org/docs/stable/generated/torch.optim.SGD.html&gt;`__
# (stochastic gradient descent) optimizer. The learning rate is initially set to
# 5.0 and follows a `StepLR &lt;https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html&gt;`__
# schedule. During training, we use `nn.utils.clip_grad_norm\_ &lt;https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html&gt;`__
# to prevent gradients from exploding.
#

import copy
import time

criterion = nn.CrossEntropyLoss()
lr = 5.0  # learning rate
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)

def train(model: nn.Module) -&gt; None:
    model.train()  # turn on train mode
    total_loss = 0.
    log_interval = 200
    start_time = time.time()
    src_mask = generate_square_subsequent_mask(bptt).to(device)

    num_batches = len(train_data) // bptt
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        data, targets = get_batch(train_data, i)
        seq_len = data.size(0)
        if seq_len != bptt:  # only on last batch
            src_mask = src_mask[:seq_len, :seq_len]
        output = model(data, src_mask)
        loss = criterion(output.view(-1, ntokens), targets)

        optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
        optimizer.step()

        total_loss += loss.item()
        if batch % log_interval == 0 and batch &gt; 0:
            lr = scheduler.get_last_lr()[0]
            ms_per_batch = (time.time() - start_time) * 1000 / log_interval
            cur_loss = total_loss / log_interval
            ppl = math.exp(cur_loss)
            print(f'| epoch {epoch:3d} | {batch:5d}/{num_batches:5d} batches | '
                  f'lr {lr:02.2f} | ms/batch {ms_per_batch:5.2f} | '
                  f'loss {cur_loss:5.2f} | ppl {ppl:8.2f}')
            total_loss = 0
            start_time = time.time()

def evaluate(model: nn.Module, eval_data: Tensor) -&gt; float:
    model.eval()  # turn on evaluation mode
    total_loss = 0.
    src_mask = generate_square_subsequent_mask(bptt).to(device)
    with torch.no_grad():
        for i in range(0, eval_data.size(0) - 1, bptt):
            data, targets = get_batch(eval_data, i)
            seq_len = data.size(0)
            if seq_len != bptt:
                src_mask = src_mask[:seq_len, :seq_len]
            output = model(data, src_mask)
            output_flat = output.view(-1, ntokens)
            total_loss += seq_len * criterion(output_flat, targets).item()
    return total_loss / (len(eval_data) - 1)

######################################################################
# Loop over epochs. Save the model if the validation loss is the best
# we've seen so far. Adjust the learning rate after each epoch.

best_val_loss = float('inf')
epochs = 3

with TemporaryDirectory() as tempdir:
    best_model_params_path = os.path.join(tempdir, "best_model_params.pt")

    for epoch in range(1, epochs + 1):
        epoch_start_time = time.time()
        train(model)
        val_loss = evaluate(model, val_data)
        val_ppl = math.exp(val_loss)
        elapsed = time.time() - epoch_start_time
        print('-' * 89)
        print(f'| end of epoch {epoch:3d} | time: {elapsed:5.2f}s | '
            f'valid loss {val_loss:5.2f} | valid ppl {val_ppl:8.2f}')
        print('-' * 89)

        if val_loss &lt; best_val_loss:
            best_val_loss = val_loss
            torch.save(model.state_dict(), best_model_params_path)

        scheduler.step()
    model.load_state_dict(torch.load(best_model_params_path)) # load best model states


######################################################################
# Evaluate the best model on the test dataset
# -------------------------------------------
#

test_loss = evaluate(model, test_data)
test_ppl = math.exp(test_loss)
print('=' * 89)
print(f'| End of training | test loss {test_loss:5.2f} | '
      f'test ppl {test_ppl:8.2f}')
print('=' * 89)
</pre></body></html>